B.Tech 3rd Semester Exam., 2014

FLUID MECHANICS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer (any seven): 2×7=14
 - (a) Falling drops of water become spherical due to
 - (i) adhesion
 - (ii) cohesion
 - (iii) viscosity
 - (iv) absorption
 - (y) surface tension
 - b) The coefficient of viscosity is a property of
 - (i) the fluid
 - (ii) the boundary condition
 - (iii) the body over which flow occurs
 - (iv) the flow velocity

(c) The continuity equation represents conservation of

(i) mass

- (ii) momentum
- (iii) energy
- (iv) vorticity
- (d) A streamline is a line
 - (i) connecting midpoints of a flow cross-section
 - (ii) connecting points of equal velocity in a flow field
 - (iii) tangent to which at any point gives the direction of velocity vector at that point
 - (iv) drawn normal to the velocity vector at any point
- (e) Navier-Stokes equations are associated with
 - (i) buoyancy :

(ii) turbulence

- (iii) viscosity -
- (iv) compressibility_
- (v) vorticity and circulation

AK15-2700/82

(Turn Over)

- (f) The velocity distribution at any section of a pipe for steady laminar flow is
 - (i) linear
 - (ii) exponential
 - (iii) parabolic
 - (iv) hyperbolic
- (g) Which of the following has the form of Reynolds number?

(i)
$$\frac{\Delta_{\rho}}{\rho v^2}$$

(ii)
$$\frac{v^2 l \rho}{\sigma}$$

(iv)
$$\frac{v}{\sqrt{gd}}$$

(h) The square root of inertia force to gravity force is known as

(i) pressure coefficient

Froude's number

- (iii) Weber number
- (iv) Mach number

- (i) One atmospheric pressure equals
 - (i) 1.0132 kgf/cm²
 - (ii) 760 mm of mercury
 - (iii) 1.0135 N/m²
 - (iv) 10.3 mm of water
 - Any of the above
- (j) The range of coefficient of discharge for a venturimeter is
 - (i) 0.6-0.7
 - (ii) 0·7-0·85
 - (iii) 0·85-0·92
 - (iv) 0.92-0.98
- 2/ (a) Check whether the following functions represent possible flow phenomenon of irrotational type:

(i)
$$\phi = x^2 - y^2 + y$$

- (ii) $\phi = \sin(x + y + z)$
- (iii) $\phi = \frac{4x}{x^2 + y^2}$
- (b) Define surface tension. Prove that the relationship between surface tension and pressure inside a droplet of liquid in excess of outside pressure is given by

$$P = \frac{4\sigma}{d}$$
 6+8=14

- 3. (a) With neat sketches, explain the conditions of equilibrium for floating and submerged bodies.
 - (b) A differential manometer is connected at the two points A and B as shown in the figure below:

At B, air pressure is 9.81 N/cm^2 (absolute), find the absolute pressure at A. 6+8=14

- 4. (a) Derive Euler's equation of motion along a streamline and hence derive the Bernoulli's theorem.
 - (b) A conical tube 1.5 m long is fixed vertically with its smaller end upwards and it forms a part of pipeline. Water flows down the tube and measurements indicate that velocity is 4.5 m/sec at the

smaller end, 1.5 m/sec at the larger end and the pressure head is 10 m of water at the upper end. Presuming that loss of head in the tube is expressed as

$$\frac{0.33(v_1 - v_2)^2}{2g}$$

where v_1 and v_2 are the velocities at the upper and lower ends, make calculations for the pressure head at the lower end of the conical tube.

14

5. (a) The details of a parallel-pipe system for water flow are shown in the figure below:

- (i) If the frictional drop between the junctions is 15 m of water, determine the total flow rate.
- (ii) If the total flow rate is 0.66 m³/sec, determine the individual flow and the friction drop.

Find the difference in drag force exerted on a flat plate of size 2 m × 2 m when the plate is moving at a speed of 4 m/sec normal to its plane in (i) water and (ii) air of density 1.24 kg/m3. Coefficient of drag is given as 1.15.

8+6=14

Prove that the discharge through a triangular notch or weir is given by

$$Q = \frac{8}{15} C_d \tan(\theta/2) \sqrt{2g} H^{5/2}$$

- The head of water over a rectangular notch is 900 mm. The discharge is 300 litres/sec. Find the length of the notch, when $C_d = 0.62$. 8+6=14
- Using Rayleigh's method, determine the 7. (a) rational formula for discharge Q through a sharp-edged orifice freely into the atmosphere in terms of constant head H, diameter d, mass density p, dynamic viscosity µ and acceleration due to gravity q.
 - Define the following:
 - (i) Laminar and turbulent flow
 - (ii) Rotational and irrotational flow
 - (iii) Uniform and non-uniform flow

8+6=14

AK15-2700/82

(Turn Over)

- Define the equation of continuity. Obtain an expression for continuity equation for a three-dimensional flow.
 - (b) What do you mean by equipotential line and a line of constant stream function?
 - (ii) Describe the uses and limitations of the flow nets.

14

14

- 9. Write short notes on any three of the following:
 - (a) Boundary layer separation and its control
 - Different types of fluid
 - Hydraulic Grade Line (HGL)
 - Pitot tube
 - Circulation and vorticity