B.Tech 2nd Semester Exam., 2016

BASIC ELECTRICAL ENGINEERING

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The questions are of equal value.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer from the following (any seven):
- o) sasque parallel branches is 1 W. What is total power dissipation of the circuit?
 - **但 1 W**
 - (ii) 4 W
 - (iii) 3 W
 - fivl Zero⊤
 - (b) The number of independent loops for a network with n nodes and b branches is
 - (ii) n-1
 - (ii) b n
 - (iii) b-n+1
 - (iv) independent of number of nodes

- (c) Superposition theorem is valid only for
 - (i) linear circuit
 - (ii) non-linear circuit
 - (iii) Both (i) and (ii)
 - (iv) Neither of two
- (d) A sine-wave voltage is applied across inductor. When the frequency of voltage is increased, the current
 - (i) increases
 - 间 decreases
 - (iii) remains same
 - fivi becomes zero
- (e) The frequency of applied voltage in series
 RLC circuit is increased, what happens to
 the inductive reactance?
 - Decreases
 - (ii) Remains same
 - (iii) Increases
 - (iv) Becomes zero
- f) In a certain RC circuit, the true power is 2 W, and reactive power is 3.5 VAR, What is the apparent power?
 - (i) 3.5 VA
 - (ii) 2 VA
 - (iii) 4:03 VA
 - (iv) 3 VA

3)

- In complex impedance circuit, the maximum power transfer occurs when the load impedance is equal to
 - complex conjugate of source impedance
 - source impedance
 - source resistance
 - (iv) None of the above
- In parallel resonance circuit, why does current lag behind the voltage at frequencies below resonance?
 - (i) Because the circuit is predominantly resistive
 - Because the circuit is predominantly inductive toins: No. ..
 - Because the circuit is predominantly capacitive
 - (iv) None of the above
- two, wattmeter method of measurement, when pf = 0.5 mi
 - (i) the readings of two wattmeters are equal and positive
 - the readings of two wattmeters are equal and opposite
 - (iii) the total power is measured by only one wattmeter
 - (iv) None of the above

(Turn Over)

Two coils connected in series have an equivalent inductance are connected in aiding. If the self-inductance of first coil is 1 H, self-inductance of second coil (Assume $M = 0.5 \,\mathrm{H}$ will be

1 H

2 H

3 H

akubihar.com

ลิทยากานอุลานี้ ได้ แนะไม่ 🗠 🧸

Define - Journing of Contract

- ii) average value;
- RMS value:
- (iii) peak factor.

and Becauses

empacitive.

attellus lave

The circuit shown in figure below consists of 1 kΩ resistor in series with 50 mH coil, 10 V r.m.s., 10 kHz signal is applied. Find the impedance Z, current I, phase angle θ . voltage across resistance V_R, voltage across inductance V_L .

(5)

- 3. (a) Explain power triangle giving suitable phasor diagram.
 - (b) Two impedances $Z_1 = 10 \angle -60^{\circ} \Omega$ and $Z_2 = 16 \angle 70^{\circ} \Omega$ are in series and pass an effective current of 5 A. Determine the active power, reactive power, apparent power and power factor.
- 4. For the circuit shown in figure below, determine Thevenin's equivalent between the output terminals AB.

- 5. Derive and explain the quality factor and its effect
- 6. (a) Define composite series circuit
 - (b) Calculate the mmf required to produce a fluxof 5 mWb across an air gap of 25 mm of
 length having an effective area of 100 cm² of
 a cast steel ring of mean iron path of 0.5 m
 and cross-sectional area of 150 cm² as

shown in figure below. The relative permeability of cast steel is 800. Neglect leakage flux.

7. A symmetrical 3- ϕ , 3-wire, 400 V, supply is connected to delta-connected load as shown in figure below. Impedances in each branch are $Z_{RY} = 10\angle 30^{\circ}\Omega$, $Z_{YB} = 10\angle -45^{\circ}\Omega$ and $Z_{BR} = 2\cdot 5\angle 60^{\circ}\Omega$. Find its equivalent star-connected load in sequence RYB.

 Z_{BR} 2.5 \angle 60° Ω Z_{RY} 10 \angle 30° Ω 400 V Z_{RY} 10 \angle 30° Ω Z_{RY} 10 \angle 30° Ω Z_{RY} 10 \angle 30° Ω

e) Explain energy-meter.

An energy meter is designed to make 100 rev/kWh of energy. It is connected to load carrying 20 A at 230 V at 0.8 pf for an hour. The energy meter actually makes 362 revolutions. Find percentage error.

AK16/608

akubihar.com

(Turn Over)

akubihar.com

AK16/608

akubihar.com

(Continued)

[7]

- 9. (g) Explain moving-iron instruments.
 - (b) A 220 V/110 V, 60 Hz transformer has a total no-load loss of 800 W while drawing 3.5 A current at 220 V. The primary winding resistance is 0.54 Ω. From the manufacturer's core-loss data, hysteresis loss at 60 Hz was found to be 520 W. If the operating voltage and frequency are doubled, calculate the new core losses.

