(DME 416 C)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Final Year)

MECHANICAL ENGINEERING

Paper - VI : Optimization Techniques

Time : 3 Hours

Maximum Marks: 75

Answer question No. 1 compulsory	(15)
Answer ONE question from each unit	(4 x 15 = 60)

- *1)* Write a brief note on :
 - a) Interpolation methods.
 - b) Define Hessian matrix of a function.
 - c) State limitations of classical methods insolving one-dimensional minimization problem.
 - d) Define a saddle point and indicate its significance.
 - e) Geometric programming.

<u>Unit - I</u>

- 2) a) State the linear programming problem in stand form and explain.
 - b) List the engineering application of optimization.

OR

3) Write detailed notes on classification of optimization problems.

<u>Unit – II</u>

4) Explain Random search method with an example.

OR

- 5) a) Explain any gradient search method using a flow chart.
 - b) Find the extreme points of the function.

 $f(x) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6$

<u>Unit – III</u>

6) Find the solution for the following problem using geometric programming method

```
Minimize Z = x_1 x_2 x_3^{-2} + 2 x_1^{-1} x_2^{-1} x_3 + 5x_2 + 3x_1 x^{-2}
x_1, x_2, x_3 \ge 0
```

OR

7) Explain with an example stochastic programming. Give some application areas of stochastic programming.

<u>Unit – IV</u>

- 8) a) Explain method of optimization used in design of simple linkage mechanism.
 - b) Derive the necessary conditions of optimality and find the solution for following problem. Min $f(x) = 5x_1 x_2$ Subjected to $25 -x_1^2 - x_2^2 > 0$.

OR

9) A closed cylindrical storage tank is required to hold a minimum of 3000 m³ of oil. Cost of material is Rs. 50/- per square meter. Frame a constrained geometric programming problem for minimum cost and solve.

κβκβ