B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the End of Third Year)

MECHANICAL ENGINEERING

Paper - V: I.C. Engines and Gas Turbines

Time: 3 Hours Maximum Marks: 75

Answer question No. 1 is compulsory

(15)

Answer ONE question from each unit

 $(4 \times 15 = 60)$

- 1) a) Differentiate between a flywheel and a governor.
 - b) Define the terms pre-ignition and detonation.
 - c) What is meant by ignition delay?
 - d) What are causes of knock in C.I. Engines?
 - e) Define the terms Bore, Stroke, Swept volume, compression ratio and clearance volume.
 - f) Write a short note on fuels used for gas turbines.
 - g) State the fundamental differences between the jet propulsion and Rocket propulsion.

Unit - I

2) Explain classification of I.C. Engines. Draw the value timing diagram for 4-stroke engine and briefly explain the working principle of it.

OR

- 3) a) Explain the working principle of simple carburettor with a neat sketch.
 - b) Comparision between a Flywheel and a Governor.

<u>Unit – II</u>

4) A 2-cylinder C.I engine with a compression ratio 14: 1 and cylinder dimensions of 200 mm × 250 mm works on two stroke cycle and consumes 14 kg/h of fuel while running at 300 r.p.m. The relative and mechanical efficiencies of engine are 65% and 76% respectively. The fuel injection is effected upto 5% of stroke. If the calorific value of the fuel used is given as 41800 kJ/kg. Calculate the mean effective pressure developed?

OR

5) What is combustion of fuels? Explain in detail combustion analysis, And types.

Unit – III

- 6) a) What is combustion process? In S.I Engines and C.I Engines?
 - b) Write a short notes on octane number and cetane number.

OR

- 7) An axial flow compressor with an overall Isentropic efficiency of 85% draws air at 20°C and compress if in the pressure ratio 4:1, The mean blade speed and flow velocity are constant throughout the compressor. Assuming 50% reaction blading and taking blade velocity as 180 m/s and work input factor as 0.82 calculate:
 - i) Flow velocity.
 - ii) Number of stages.

Unit – IV

- 8) a) Draw the schematic layout of gas turbine cycle with regenerator, reheating and intercooler? Explain salient features.
 - b) What do you mean by jet propulsion?

OR

- 9) In a jet propulsion unit air is drawn into the Rotary compressor at 15°C and 1.01 bar and delivered at 4.04 bar. The isentropic efficiency of compression is 82% and the compression is uncooled. After delivery the air is heated at constant pressure until the temperature reaches 750°C. The air then passes through a turbine unit which drives the compressor only and has an isentropic efficiency of 78% before passing through the nozzle and expanding to atmospheric pressure of 1.01 bar with an efficiency of 88%. Neglecting any mass increase due to the weight of the fuel, determine:
 - i) The power required to drive the compressor.
 - ii) The air-fuel ratio if the fuel has a calorific value of 42000 KJ-Kg.
 - iii) The pressure of the gases leaving the turbine.
 - iv) The thrust per kg of air per-second.

