(DME 312)

B.Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Third Year)

MECHANICAL ENGINEERING

Paper - II : Design of Machine Elements

Time : 3 Hours

1)

a)

b)

c)

d)

e)

f)

g)

a)

b)

a)

2)

3)

Maximum Marks : 75

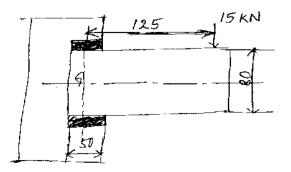
<u>Answer question No.1 compulsory</u>	(15) $(4 \times 15 = 60)$
<u>Answer ONE question from each unit</u> State commonly used materials for rivets.	$(4 \times 13 = 60)$
Define the efficiency of compound screw.	
What are the applications of cotter joint?	
Explain Self locking screws.	
What are the various factors influence the endurance limit of a material?	
What is reinforcement in weld? What are advantage of it?	
What is fatigue stress concentration factor?	
<u>UNIT – I</u>	
Discuss about phases of design.	
Explain :	
i) Thermal stress	
ii) Hoop stress	
OR	
Explain the following theories of failure.	

- - i) Maximum principal (normal) stress theory
 - ii) Maximum shear stress theory.
- Explain the terms reliability, maintainability and availability in the design of mechanical b) component.

UNIT - II

- A square threaded transmission screw used in a screw jack has a root diameter of 80mm and a lead of 12mm. It is double thread and is designed to lift a load of 120KN. The coefficient of friction is 0.15. Determine the following.
 - a) Pitch of the screw
 - b) Mean radius of thread
 - c) Efficiency of screw
 - d) Unit compressive stress in the screw.
 - e) Bearing pressure on the projected area of the threads in contact.
 - f) Is the screw self locking.

OR


- 5) a) Explain the Goodman method for combination of stress.
 - b) A 5 cm diameter shaft is made from carbon steel having ultimate tensile strength of 6300Kgf/cm². It is subjected to a torque which fluctuates between 20000Kgf-cm to 8000Kgf-cm. Using Soder berg method, calculate the factor of safety. Assume suitable values for any data needed.

<u>UNIT - III</u>

6) Design a double riveted butt joint with two cover plates for the longitudinal seam of a boiler shell of 800mm diameter. The maximum steam pressure is 1.2MPa. The allowable stresses are T = 30MPa, $\sigma_1 = 37MPa$, $\sigma_c = 55MPa$. The efficiency of the joint is 70%. The corrosion allowance is 1mm.

OR

7) A bracket carrying a load of 15kN is to be welded as shown in figure. Find the size of weld required if the allowable shear stress is not to exceed 80MPa.

<u>UNIT – IV</u>

- *8)* Explain the following:
 - a) Design of socket and spigot cotter joint.
 - b) Distinguish among through bolt. Carriage bolt, tap bolt stud and set screw.

OR

9) Design a knuckle joint to transmit 150kN. The design stresses may be taken as 75MPa, in tension, 60MPa in shear and 150MPa in compression.

**