(DME 213)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Second Year)

MECHANICAL ENGINEERING

Paper - III : Kinematics of Machines

1)

Maximum Marks : 75

	An	swer question No. 1 is compulsory	(15 x 1 = 15)
	An	swer ONE question from each unit	(4 x 15 = 60)
Explain the following.			
a)	Types of instantaneous cen	tres for a mechanism.	
b)	Path generation.		
c)	Law of gearing.		
d)	Inversion.		
e)	Kennedy's theorem.		

- Classification of Kinematic chains. f)
- Body centrode & space centrode. g)
- Kutzbach mobility criterion. h)
- Normal pitch of helical gear. i)
- j) What is a prime circle?
- k) Velocity of rubbing.
- 1) Kinematic link.
- Torques in Epicyclic gear train. m)
- Sketch Roller cam profile. n)
- Types of followers. 0)

<u>Unit – I</u>

- 2) a) Define kinematic pair. Explain about their classification.
 - b) Explain any two inversions of double slider crank chain.

OR

3) Prove that Harts and peacellier mechanisms are exact straight line motion mechanisms.

<u>Unit – II</u>

4) In the slider crank mechanism shown in the figure the crank OA rotates with a uniform speed of 60 rpm. Determine the linear velocity of the slider B. Determine also the linear velocity of point Q located at a distance of 5 cm on the connecting and extended.

- 5) a) What is coriolis acceleration? In which cases does it occur? How is it determined?
 - b) Explain the relative velocity method for the determination of velocities in a mechanism.
 - c) Explain slider crank mechanism.

<u>Unit – III</u>

6) Set out the profile of a cam to give the following motion to a flat mush-room contact face follower.
Follower to rise through 24 m during 150° of cam rotation with 5 H.M.
Follower the dwell for 30° of the cam rotation.

Follower to return to the initial position during 90° of the cam rotation with 5 H.M.

Follower to dwell for the remaining 90° of cam rotation.

Take minimum radius of the cam as 30 mm.

OR

7) Design a four-link mechanism when the motions of the input and the output links are governed by a function $y - 2 \log_{10}^{x}$ in and x varies from 2 to 4 with an interval. Assume θ to vary from 30° to 70° and ϕ from 40° to 100°.

<u>Unit – IV</u>

8) Explain the following :

- a) What is a differential gear of an automobile? How does it function.
- b) How are the centre distance and efficiency of worm gears found?

OR

- 9) a) Explain the procedure to analyse epicyclic gear train.
 - b) Two spur gears in mesh have a module of 8 mm and a pressure angle of 20°. The larger gear has 57 while the pinion has 23 teeth. If the addenda on pinion and gear wheels are equal to one module, find
 - i) The number of pairs of teeth in contact.
 - ii) The angle of action of the pinion and the gear wheel.
 - iii) the ratio of the sliding to rolling velocity at the pitch point.

жжж