(DME 221)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Second Year)

MECHANICAL ENGINEERING

Paper - I : Engineering Mathematics - IV

Time : 3 Hours

Maximum Marks : 75

Answer question No.	<u>1 compulsory</u>	(15)
---------------------	---------------------	------

<u>Answer ONE question from each unit</u> $(4 \times 15 = 60)$

- *1)* a) Define one dimensional wave equation.
 - b) What are the possible solutions of the wave equation.
 - c) Write Laplace equation in Cartesian form.
 - d) Define Cauchy Riemann equations in both Cartesian and polar coordinates.
 - e) Define harmonic function and conjugate of harmonic function.
 - f) Define poisson's integral formula.
 - g) Find the Laurent's expansion of $z^2 e^{\frac{1}{2}}$ with center o.
 - h) Write Laurent's series.

<u>UNIT - I</u>

2) A string is stretched and fastened to two points *l* apart motion is started by displacing the string in the form $y = a \sin \frac{\pi x}{l}$ from which it is released at time t = 0 show that the displacement of any point at a distance x from one end at time t is given by $u(x,t) = a \sin \frac{\pi x}{l} \cos \left(\frac{\pi t}{l}\right)$.

OR

3) Solve the Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ with the boundary conditions.

- $u(0, y) = u(\pi, y) = 0$ for ally
- $\mathbf{u}(x,\infty) = 0 \text{ in } 0 < x < \pi$
- $u(x, 0) = 40 \quad 0 < x < \pi$

<u>UNIT – II</u>

4) a) Evaluate
$$\prod_{c} \frac{e^{tz}}{z^2 + 1} dz$$
 where c is $|z| = 3$.

b) Show that $v(x, y) = -\sin x$ sinhy is harmonic find the conjugate harmonic of V.

OR

5) a) Using the Cauchy's integral formula $\iint_c \frac{\cos \pi z}{z^2 - 1} dz$ around a rectangle with vertices $2 \pm i$, $-2 \pm i$

b) Compute
$$\int_{0}^{\infty} \frac{dx}{a^2 + x^2}$$

<u>UNIT - III</u>

6) Evaluate
$$\int_{-\infty}^{\infty} \frac{\cos mx}{x^2 + a^2 + x^2 + b^2} dx$$

OR

7) State and prove Laurent's series.

<u>UNIT – IV</u>

8) Show that $W = \frac{i-z}{i+z}$ maps the real axis of z plane into the circle |w| = 1 and the half plane y > 0 into interior of unit circle |w| = 1 in the w – plane.

OR

9) Prove that cross ratio of four points is invariant under bilinear transformation.

RRR