B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of First Year

Paper - II : Mathematics - II

Answer one question from each unit

$(4 \times 15=60)$

1) a) Write conditions system of linear equation of the form $A X=B$.
b) Find Rank of $\mathrm{A}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 2 & 3\end{array}\right)$.
c) $\mathrm{A}=\left(\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right)$ find the quadratic form of A .
d) Find the eigen value $\mathrm{A}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & -4\end{array}\right)$
e) State tagange's mean value theorem.
f) Write expansion of e^{x} using taylor series.
g) If $f(x, y)=x y+(x-y)$ the stationary points are.
h) Find the radius of curvature at the origin of the curve $y=x^{4}-4 x^{3}-18 x^{2}$
i) Evaluate $\int_{0}^{2} \int_{0}^{x} y d y d x$.
j) $\int_{0}^{\pi a \cos \theta} \int_{0} r \sin \theta d r d \theta$
k) Define gamma function.
2) Define gradient.
m) Define $\nabla \phi$
n) $\bar{f}=x_{1} i+x_{2} j+x_{3} k$ then $\nabla \times \bar{f}$
o) State stoke's theorem.

Unit - I

2) a) Investigate for what values of λ and μ the system of simultaneous equations. $x+y+z=6, \quad x+2 y+3 z=10, x+2 y+\lambda z=\mu$ has
i) no solution
ii) a unique solution
iii) an infinite number of solutions.
b) Find the eigen values and Eigen vector of the matrix.

$$
\mathrm{A}=\left(\begin{array}{lll}
1 & 1 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right)
$$

OR

c) Verify the cayley - Hamilton theorem for the matrix A and find its inverse

$$
A=\left(\begin{array}{ccc}
1 & 2 & 0 \\
2 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

d) Find the Eigen values and Eigen vectors of matrix

$$
\mathrm{A}=\left(\begin{array}{lll}
i & 0 & 0 \\
0 & 0 & i \\
0 & i & 0
\end{array}\right)
$$

Unit - II

3) a) Write taylor series for $f(x)=(1-x)^{5 / 2}$ with Lagranges form of remainder up to 3terms in the internal [0.1].
b) Examine for minimum and maximum values of $\sin x+\sin y+\sin (x+y)$.

OR

c) Find the maximum and minimum of $\mathrm{U}=x^{2}+y^{2}+z^{2}$ if $a x^{2}+b y^{2}+c z^{2}=1$ and $\quad l x+m y$ $+n z=0$

Unit - III

4) a) Evaluate $\iint\left(x^{2}+y^{2}\right) \mathrm{dx}$ dy over the area bounded by ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
b) Evaluate the triple integral $\iiint x y^{2} z d x d y d z$ taken through the positive octant of the sphere x^{2} $+y^{2}+z^{2}=a^{2}$.

OR

c) Find the volume common to the cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$.
5) a) Using Green's theorem evaluate $\int_{C} 2 x^{2}-y^{2} d x+x^{2}+y^{2} d y$ where c is the boundary in $x y$-plane of the arc enclosed by x-axis and the semicircle $x^{2}+y^{2}=1$ in the upper half of the $x y$ - plane.

OR

b) Verify Gauss divergence theorem for $f=x^{3} \bar{i}+y^{3} \bar{j}+z^{3} \bar{k}$ taken over the cube bounded by $x=0, x=\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{a}, \mathrm{z}=0, \mathrm{z}=\mathrm{a}$.

\&ٌ\&

