(DEC 323)

B.Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the End of Third Year)

Electronics & Communications

Paper - III : DIGITAL SIGNAL PROCESSING

Time : 3 Hours

Maximum Marks: 75

Answer question No.1 compulsory	$(15 \times 1 = 15)$
---------------------------------	----------------------

<u>Answer ONE question from each unit</u> $(4 \times 15 = 60)$

- *1)* a) Define causal and Non-causal signals.
 - b) What is a linear system state its condition.
 - c) What is the relation between Fourier Transform and Z-transform.
 - d) Define one-sided and two-sided Z-transform.
 - e) State the initial value theorem with regard to Z- transform.
 - f) What is FFT?
 - g) Define inverse DFT.
 - h) State the shifting property of DFT.
 - i) Define an IIR filter.
 - j) Write the magnitude function of chebyshex lowpass filter.
 - k) What is Butterworth approximation.
 - 1) Write the equation for Blackman window.
 - m) Give advantages of FIR filters.

- n) What is aliasing.
- o) What is the necessary condition for Linear phase realization of FIR systems.

<u>UNIT – I</u>

- 2) a) Explain the concept of digital signal processing.
 - b) State and prove following properties of Z-transform.
 - i) Time reversal
 - ii) Differentiation in Z-domain

OR

- a) Prove that convolution in time domain leads to multiplication in frequency domain for discrete time signals.
 - b) Determine Z-transform and ROC for $-a^n u (-n-1)$

<u>UNIT - II</u>

- 4) a) Determine DFT of a sequence $x(n) = \{1, 1, 0, 0\}$
 - b) Obtain the relation between Z-transform and DFS.

OR

- 5) a) What is FFT? Calculate the number of multiplications needed in the calculation of DFT with 32 point sequence.
 - b) Compute circular convolution using DIT-FFT algorithm for the given sequences $x(n) = \{1, 1, 1, 1\}$ and $h(n) = \{1, 0, 1, 0\}$.

<u>UNIT - III</u>

- *6)* a) Describe IIR filter characterization in time domain.
 - b) Discuss magnitude characteristics of an analog Butterworth filter and give its pole locations.

OR

- 7) a) Convert the following analog filter transfer function into digital filter transfer function using backward difference method. $H(S) = \frac{1}{(S+2)^2+9}$
 - b) Design an analog Butterworth filter that has a -2dB pass band attenuation at a frequency of 20rad/sec and atleast -10dB stop band attenuation at 30rad/sec. (Assume $\Omega_C = 21.3868$ rad/sec)

<u>UNIT - IV</u>

- *8)* a) Compare the frequency domain characteristics of different windows used in FIR filter design.
 - b) Give the expression for rectangular window function. Find its frequency response and also sketch its spectrum.

OR

- 9) a) What are the advantages of FIR filters over IIR filters.
 - b) Obtain the parallel form of realization of LTI system governed by the equation.

$$y(n) = -\frac{3}{8}y(n-1) + \frac{3}{32}y(n-2) + \frac{1}{64}y(n-3) + x(n) + 3x(n-1) + 2x(n-2)$$

φφφ