B.Tech. DEGREE EXAMINATION, MAY - 2015
 (Examination at the end of Second Year)

 ELECTRONICS \& COMMUNICATIONS

 ELECTRONICS \& COMMUNICATIONS

 Paper - III : Transmission Lines \& Waves

 Paper - III : Transmission Lines \& Waves}

Answer question No. 1 compulsory

Answer ONE question from each unit

1) a) State one difference b / w attenuation constant $\&$ phase constant.
b) Define Group velocity.
c) Define standing wave ratio.
d) Applications of single stub.
e) Mathematical expression for velocity of propagation.
f) What is double stub matching?
g) Give the characteristics of TE Wave.
h) Write the expressions for Attenuation factor \& Q-factor?
i) What is symmetrical strip transmission?
j) Which is dominant mode in circular wave guide?

UNIT - I

2) a) Define and derive the expression's for attenuation \& phase constant.
b) A telephone wire 10 km long has the following constants per loop km resistance 50Ω, capacitance $0.01 \mu \mathrm{~F}$, inductance 0.001 H and leakage $=1.5 \times 10^{-6}$ mhos. The line is terminated in its characteristics impedance and potential difference of 2 V having a frequency of 2000 Hz is applied at Sending end. Calculate velocity of propagation and wave length.
3) Write short notes on
a) Velocity of propagation.
b) Group velocity
c) Waveform distortion
d) Reflection coefficient.

UNIT - II

4) a) Differentiate b / w single stub and double stub Impedance matching.
b) List out the various parameters of co-axial lines at high frequencies.

OR

5) A transmission line of length \& characteristic impedance $0.4 \lambda, 100 \Omega$ respectively and is terminated with a load impedance of $100+\mathrm{j} 90 \Omega$. Find the (i) Voltage reflection coefficient (ii) VSWR (iii) Input Impedance of the line. Compare the results with Smith Chart.

UNIT - III

6) a) Compare the transverse electric waves versus Transverse magnetic waves.
b) Explain about the dominant \& other important modes.

OR
7) Explain the concept of impossibility of TEM and also Derive an expression for it?

UNIT - IV

8) Give the solutions to the field equations in cylindrical co-ordinates.

OR
9) a) Explain briefly about parallel plate transmission.
b) Differentiate Symmetrical Strip transmission \& Assymmetric Strip transmission.

