(DEC 214)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the End of Second Year)

ELECTRONICS & COMMUNICATIONS

Paper - IV : EMF Theory

Time : 3 Hours

1)

Maximum Marks: 75

Answer question No.1 compulsory				
	Answer ONE question from each unit	(4 × 15 = 60)		
a)	State Coulombs law.	(1)		
b)	Write down the of Poisson's equations in a non-homogeneous and homogeneou	s region? (2)		
c)	Explain the concept of Skin Depth.	(2)		
d)	State Ampere's circuital law and obtain third Maxwell's equation.	(2)		
e)	Does an isolated magnetic charge exists? Justify.	(2)		
f)	State curl's theorem.	(1)		
g)	Express divergence of electric field in integral form.	(1)		
h)	Find direction of propagation for the field $E = 50 \cos (10^8 t - \beta z) a_v V/m$.	(1)		
i)	Define polarization.	(1)		
j)	State Poynting's Theorem.	(1)		
k)	Express magnetic scalar potential.	(1)		
UNIT - I				

- a) Derive the electric flux density for a surface charge using coulomb's law with relevant coordinate system.
 (8)
 - b) i) Prove ∇ . D = ρ_v .
 - ii) A point charge 100 pC is located at (4, 1, -3) while the x-axis carries charge 2 nC/m. If the plane z = 3 also carries 5 nC/m². Find E at (1, 1, 1). (7)

OR

		OR			
3)	a)	Derive the expression for a capacitance of coaxial capacitor with neat schematic.	(8)		
	b)	Derive the expression for energy stored in electrostatic fields.	(7)		
		<u>UNIT – II</u>			
4)	a)	State and derive Biot-Savart's law. Is Magnetostatic field conservative, explain and o	btain		
		M.E of divergence of magnetic field.	(10)		
	b)	A steady state current of I amps flow in a conductor bent in the form of square loop o	of side		
		'a'. Find the 'H' at the center of the loop.	(5)		
OR					
5)	a)	Derive the expression of H for surface current distribution with neat schematic?	(10)		
	b)	Determine	(5)		
		i) J_d and			
		ii) H for $E = 20 \cos (\omega t - 50z) a_y V/m$ in free space.			
<u>UNIT - III</u>					

- a) Derive expression for a force between two current elements. A current element of length 2 cm is located at the origin in free space and carries current 12ma along a_z, A filamentary current of 15 a_z A is located along x = 3, y = 4. Find the force on a current filament. (10)
 - b) Derive relaxation time. (5)

OR

- 7) a) Explain how the transformer emf and motional emf are produced. (8)
 - b) Derive law of refraction of the electric field at a boundary form Maxwell's equations. (7)

<u>UNIT – IV</u>

- 8) a) Derive the expressions of α , β , η , E & H for a lossy medium. (10)
 - b) A plane wave travelling in the +y direction in a lossy medium characterized by $\varepsilon_r = 4$, $\mu_r = 1$, $\sigma = 10^{-2}$ mhos/m has E = 30 cos ($10^9 \Box t + (\Box /4) a_z$ V/m at y = 0. (5) Find
 - i) E at y = 1m and t = 2ns
 - ii) H at y = 2m and t = 2ns.

OR

- 9) a) Derive Poynting's Theorem using Maxwell's equations. (8)
 b) In a non-magnetic medium = 4 sin (2π × 10⁷ t 0.8x) a_z V/m. find (7)
 i) relative permittivity and η
 ii) time average power carried by the wave
 - iii) the total power crossing 100 cm² of plate 2x + y = 5.

жжж