(DCS 321)

B.Tech DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Third Year)

COMPUTER SCIENCE & IT

Paper - I : Automata Theory & Formal Languages

Time : 3 Hours

1)

d)

f)

i)

j)

k)

1)

Maximum Marks : 75

	Answer question No.1 compulsory	$(15 \times 1 = 15)$
	Answer ONE question from each unit	$(4 \times 15 = 60)$
a)	What is the difference between NFA and DFA?	
b)	What is meant by Regular language?	
c)	Define pumping lemma.	
d)	What is the difference between regular grammar and context free grammar?	
e)	What is Chomsky normal form?	
f)	Write any two properties of CFLS.	
g)	Define pushdown Automata.	
h)	Define Finite State machine.	
i)	What is the use of MYHILL-NERODE Theorem?	
j)	What is meant by ambiguous grammar?	
k)	Define Tuning machine.	
1)	What is meant by recursively enumerable language?	
Draw	Transition Diagrams for the following regular expressions	
m)	$(a+b)^*$ abb.	
n)	$a(a+b)^* ab.$	

(a + b)*a(a + b)(a + b).0)

<u>UNIT - I</u>

2) Construct DFA for the following Transition Diagram.

3) a) Find out DFA for the following diagram.

b) Construct mod-3 counter using ternary representation.

<u>UNIT - II</u>

- 4) a) Define CFG. Write CFG for the language $L = \{0^n 1^n | n \ge 1\}$
 - b) Consider the grammar S → aS|aSbS|∈
 Is the above grammar ambiguous?
 Show in particular that the string 'aab' has no :
 - i) Parse tree
 - ii) Leftmost derivation
 - iii) Rightmost derivation

OR

- 5) a) Consider the grammar $E \rightarrow + EE \ EE \ x \ y$. Find the leftmost and right most derivation for the string '+*-xyxy' and write parse tree
 - b) Explain briefly the closure properties of regular sets.

UNIT - III

6) Convert the following grammar into GNF

 $E \rightarrow E + T \setminus T$ $T \rightarrow T * F \setminus F$ $F \rightarrow (E) \setminus a$

OR

7) Construct PDA for the language $L = \{w \subset w^R \mid w \in (a + b)^*, where w^R \text{ is reverse of } w\}$.

<u>UNIT - IV</u>

8) Design Tuning machine for the language $L = \{a^n b^n c^n / n > 1\}$

OR

9) Discuss about :

- a) Universal Tuning Machines.
- b) Techniques of Tuning machine construction.

φφφ