# B. Tech. DEGREE EXAMINATION, MAY - 2015 (Examination at the end of Second Year) COMPUTER SCIENCE Paper - I : Mathematics - IV 

Answer ONE question from each unit
$(4 \times 15=60)$

1) a) Define derivative of a function $f(z)$
b) State Cauchy - Riemann equations.
c) Define harmonic function.
d) Define zero's of a function.
e) Define Removable singularity.
f) Define Poisson's integral formula.
g) Define entire function.
h) Define conjugate of a function.
i) Define Residue theorem.
j) Define pole.
k) Define frobenius method.
2) Define Rodaigue's formula.
m) Define Bessel's equation.
n) Write the expression for $\mathrm{p}_{3}(x)$.
o) Write the orthogonal property of Legendre polynomial.

## Unit - I

2) a) Show that the function $f(z)=\sqrt{|1 x y|}$ is not analytic at the origin even through CR equations are satisfied.
b) Find the orthogonal trajectories of the family of curves $x^{4}+y^{4}-6 x^{2} y^{2}=\mathrm{C}$.

## OR

3) a) Show that $f(z)=x y+i y$ is every where continuous but not analytic.
b) State and prove Riemann equation for polar coordinates.

## Unit - II

4) a) Expand Taylor's series of $\frac{z-1}{z+1}$ about the point $z=1$.
b) Compute $\int \frac{z+4}{z^{2}+2 z+5} d z$ where c is $|z+1-i|=2$.

OR
5)
a) State and prove Taylor's series.
b) Find the Laurent series of $f(z)=\frac{1}{z^{2}(z-3)^{2}}$ about $z=3$.

## Unit - III

6) a) Evaluate $\int_{c} \frac{e^{z}}{\cos \pi z} d z$ where c is the unit circle $|z|=1$.
b) Show that $\int_{0}^{2 \pi} \frac{\cos ^{2} \theta}{1-2 a \cos \theta+a^{2}} d \theta=\frac{2 \pi a^{2}}{1-a^{2}} \quad a^{2}<1$

OR
7) a) Find the residue of $f(z)=\frac{z^{3}}{(z-1)^{4}(z-2)(z-3)}$ at its poles and hence evaluate $\iint_{c} f(z) d z$ where c is the circle $|\mathrm{z}|=2.5$.
b) Solve the series in equation $y^{\prime \prime}+x y^{\prime}+y=0$.
8) a) $\mathrm{J}_{n}^{\prime \prime}(x)=\frac{1}{4} \mathrm{~J}_{n-2}(x)-2 \mathrm{~J}_{n}(x)+\mathrm{J}_{n+2}(x)$
b) Show that $\mathrm{J}_{0}(x)=\frac{1}{\Pi} \int_{0}^{\pi} \cos (x \cos \phi) d \phi$

OR
9) a) Express $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ in terms of Legendre polynomials.
b) Prove that $n p_{n}(x)=x p_{n}^{\prime}(x)-p_{n-1}^{\prime}(x)$

## みみ\&

