(DCS 221)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Second Year)

COMPUTER SCIENCE

Paper - I : Mathematics - IV

Time : 3 Hours

1)

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

k)

1)

Maximum Marks: 75

Answer question No. 1 compulsory	(15)
Answer ONE question from each unit	(4 x 15 = 60)
Define derivative of a function $f(z)$	
State Cauchy – Riemann equations.	
Define harmonic function.	
Define zero's of a function.	
Define Removable singularity.	
Define Poisson's integral formula.	
Define entire function.	
Define conjugate of a function.	
Define Residue theorem.	
Define pole.	
Define frobenius method.	
Define Rodaigue's formula.	

m) Define Bessel's equation.

- n) Write the expression for $p_3(x)$.
- o) Write the orthogonal property of Legendre polynomial.

<u>Unit – I</u>

- 2) a) Show that the function $f(z) = \sqrt{|1xy|}$ is not analytic at the origin even through CR equations are satisfied.
 - b) Find the orthogonal trajectories of the family of curves $x^4 + y^4 6x^2y^2 = C$.

OR

- 3) a) Show that f(z) = xy + iy is everywhere continuous but not analytic.
 - b) State and prove Riemann equation for polar coordinates.

<u>Unit – II</u>

4) a) Expand Taylor's series of
$$\frac{z-1}{z+1}$$
 about the point $z = 1$.

b) Compute
$$\iint \frac{z+4}{z^2+2z+5} dz$$
 where c is $|z+1-i| = 2$.

OR

5) a) State and prove Taylor's series.

b) Find the Laurent series of
$$f(z) = \frac{1}{z^2(z-3)^2}$$
 about $z = 3$.

<u>Unit – III</u>

6) a) Evaluate
$$\int_{c} \frac{e^{z}}{\cos \pi z} dz$$
 where c is the unit circle $|z| = 1$.

b) Show that
$$\int_{0}^{2\pi} \frac{\cos^2 \theta}{1 - 2a\cos\theta + a^2} d\theta = \frac{2\pi a^2}{1 - a^2} a^2 < 1$$
OR

7) a) Find the residue of
$$f(z) = \frac{z^3}{(z-1)^4(z-2)(z-3)}$$
 at its poles and hence evaluate
$$\iint_{c} f(z) dz$$
 where c is the circle $|z| = 2.5$.

b) Solve the series in equation
$$y'' + xy' + y = 0$$
.

<u>Unit – IV</u>

8) a)
$$J_n''(x) = \frac{1}{4} J_{n-2}(x) - 2J_n(x) + J_{n+2}(x)$$

b) Show that $J_0(x) = \frac{1}{\Pi} \int_0^{\pi} \cos(x \cos \phi) d\phi$

OR

9) a) Express
$$f(x) = x^4 + 3x^3 - x^2 + 5x - 2$$
 in terms of Legendre polynomials.

b) Prove that
$$np_n(x) = xp'_n(x) - p'_{n-1}(x)$$

жжж