(DCS 224)

B. Tech DEGREE EXAMINATION, MAY - 2015

(Examination at the End of Second Year)

COMPUTER SCIENCE

Paper - IV : Discrete Mathematical Structures

Time : 3 Hours

Maximum Marks : 75

Answer question No.1 is compulsory	(15)
Answer ONE question from each unit	$(4 \times 15 = 60)$

- *1)* Write short notes on :
 - a) Properties of Relations.
 - b) Write converse inverse & contrapositive of the statement "∆ ABC is equilateral then it is isosceles".
 - c) Define Recurrence Relation.
 - d) Define Permutation with example.
 - e) Draw a Hasse diagram for the poset (A, 1), where A = {2, 3, 6, 12, 24, 36} and 'I' de notes the divisibility relation.

<u>UNIT - I</u>

- 2) a) Construct a truth table for the following statement: $\sim P \leftrightarrow \sim Q \leftrightarrow Q \rightarrow R$. (7)
 - b) Show that the following statements are logically equivalent : $P \rightarrow Q \land P \rightarrow R \iff P \rightarrow (Q \land R)$ (8)

OR

3) a) Show that $P \to Q \to R$, $Q \to R \to S \Rightarrow P \to Q \to S$. (7)

b) Prove that
$$A - B \cap C = A - B \cup A - C$$
. (8)

<u>UNIT - II</u>

- 4) a) State the Binomial theorem.(5)
 - b) Show that the number of r-permutations of a set of n distinct elements is given by $P(n,r) = \frac{n!}{n-r!}.$ (10)

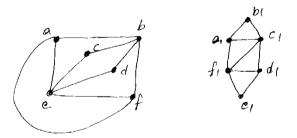
OR

- 5) a) Find the number of positive integers less than or equal to 2076 and divisible by 3 or 4.
 - b) Find the coefficient of $x^4 x^7$ in the expansion of $(x-y)^{11}$. (8)

(7)

(8)

<u>UNIT - III</u>


- 6) a) Solve the recurrence relation an $-7 a_{n-1} + 12 a_{n-2} = 0$ for $n \ge 2$, $a_0 = 1 \& a_1 = 2$. (8)
 - b) Solve the recurrence relation of Fibonacci series.

OR

- 7) a) Solve the recurrence relation $u_{n+2} + 4 u_{n+1} + 3 u_n = 5 (-2)^n$, $u_0 = 1$, $u_1 = 0$. Using generating function. (8)
 - b) Solve $an = a_{n-1} + n$ where $a_0 = 2$ by substitution. (7)

UNIT - IV

8) a) Verify the following graphs are isomorphic or not? (7)

- b) Find the chromatic number of the following graphs : (8) i) Complete Graph (K_n) ii) Complete Bi-partite graph $(K_{m,n})$ iii) Cycle graph (C_n) OR
- *9)* a) State and prove five color theorem.
 - b) Give the adjacency matrix and graph representation of the relation. (7)
 R = {(a, a), (a, c), (b, a), (b, b), (b, d), (c, b) (c, c), (c, d), (d, a), (d, b), (d, d)} on set A = {a, b, c, d}.

**