B. Tech DEGREE EXAMINATION, MAY - 2015
 (Examination at the End of Second Year) COMPUTER SCIENCE
 Paper - IV : Discrete Mathematical Structures

Answer question No. 1 is compulsory

Answer ONE question from each unit
$(4 \times 15=60)$

1) Write short notes on :
a) Properties of Relations.
b) Write converse inverse \& contrapositive of the statement " $\triangle \mathrm{ABC}$ is equilateral then it is isosceles".
c) Define Recurrence Relation.
d) Define Permutation with example.
e) Draw a Hasse diagram for the poset ($\mathrm{A}, 1$), where $\mathrm{A}=\{2,3,6,12,24,36\}$ and 'I' de notes the divisibility relation.

UNIT - I

2) a) Construct a truth table for the following statement: $\sim P \leftrightarrow \sim Q \leftrightarrow Q \rightarrow R$.
b) Show that the following statements are logically equivalent :

$$
\begin{equation*}
P \rightarrow Q \wedge P \rightarrow R \Leftrightarrow P \rightarrow(Q \wedge R) \tag{8}
\end{equation*}
$$

OR
3) a) Show that $P \rightarrow Q \rightarrow R, Q \rightarrow R \rightarrow S \Rightarrow P \rightarrow Q \rightarrow S$.
b) Prove that $\mathrm{A}-\mathrm{B} \cap \mathrm{C}=\mathrm{A}-\mathrm{B} \cup \mathrm{A}-\mathrm{C}$.

UNIT - II

4) a) State the Binomial theorem.
b) Show that the number of r-permutations of a set of n distinct elements is given by

$$
\begin{equation*}
P(n, r)=\frac{n!}{n-r!} . \tag{10}
\end{equation*}
$$

OR

5) a) Find the number of positive integers less than or equal to 2076 and divisible by 3 or 4 .
b) Find the coefficient of $x^{4} x^{7}$ in the expansion of $(x-y)^{11}$.

UNIT - III

6) a) Solve the recurrence relation an $-7 a_{n-1}+12 a_{n-2}=0$ for $n \geqq 2, a_{0}=1 \& a_{1}=2$.
b) Solve the recurrence relation of Fibonacci series.

OR
7) a) Solve the recurrence relation $u_{n+2}+4 u_{n+1}+3 u_{n}=5(-2)^{n}, u_{0}=1, u_{1}=0$. Using generating function.
b) \quad Solve an $=a_{n-1}+n$ where $a_{0}=2$ by substitution.

UNIT - IV

8) a) Verify the following graphs are isomorphic or not?

b) Find the chromatic number of the following graphs :
i) Complete Graph $\left(\mathrm{K}_{\mathrm{n}}\right)$
ii) Complete Bi-partite graph $\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)$
iii) Cycle graph $\left(\mathrm{C}_{\mathrm{n}}\right)$ OR
9) a) State and prove five color theorem.
b) Give the adjacency matrix and graph representation of the relation.
$R=\{(a, a),(a, c),(b, a),(b, b),(b, d),(c, b)(c, c),(c, d),(d, a),(d, b),(d, d)\}$ on set $A=\{a$, $\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
