(DCS 213)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Second Year)

Computer Science

Paper - III : DIGITAL LOGIC DESIGN

Time : 3 Hours

1)

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

k)

Maximum Marks : 75

Answer question No. 1 con	npulsory	(15 x 1 = 15)
Answer ONE question from	each unit	(4 x 15 = 60)
Draw the truth table of NAND gate.		
Design subtractor circuit.		
Define positive logic of TTL family.		
Define Decoder.		
Define flipflop.		
Draw 4×1 multiplexer.		
Difference between ROM & RAM.		
Define shift register.		
What are universal gates?		
What is sequential circuit?		
What is state table?		

- l) State De Morgan's theorem.
- m) What is combinational logic circuit.

- n) What is BCD Code?
- o) Difference between Asynchronous and Synchronous Circuit.

<u>Unit – I</u>

- 2) a) Convert the following :
 - i) $(3456)_{10}$ to base 2
 - ii) $(12EF)_{16}$ to base 8
 - iii) $(10110011)_2$ to base 16
 - iv) $(726)_8$ to base 10
 - b) Realize AND, OR, NOT, XOR gates using universal gates.

OR

- 3) a) Minimise the function using K-map and obtain minimal Sop function? $f(A, B, C, D) = \pi (1, 2, 3, 4, 6, 9, 10, 12, +14) + d (5, 7, 11)$
 - b) What are universal gates? Why they called so?

<u>Unit – II</u>

- *4)* a) Draw and explain the operation of 4 bit comparator.
 - b) List the applications of multiplexers and demultiplexers.

OR

- 5) a) What is an encoder? Explain octal to binary encoder.
 - b) Design the full adder using two half adders and logic gates.

<u>Unit – III</u>

- 6) Explain the following related to sequential circuit with suitable example.
 - a) State Diagram.
 - b) State Table.
 - c) State assignment.

OR

- 7) a) Distinguish between edge triggering and level triggering give examples.
 - b) Differences between Transition Table and Excitation Table.

<u>Unit – IV</u>

- 8) a) Draw the circuit diagram of 4 bit ring counter using D-flip flops and explain its operation with the help of bit pattern.
 - b) Discuss comparision between PROM, PLA and PAL.

OR

- 9) a) Explain different types of ROM generally used.
 - b) Explain programmable array logic.

жжж