B.Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the End of Second Year)

COMPUTER SCIENCE

Paper - II : Circuit Theory

Time: 3 Hours Maximum Marks: 75

Answer question No.1 compulsory

(15)

Answer ONE question from each unit

 $(4 \times 15 = 60)$

- 1) a) Write about KVL.
 - b) When 'n' capacitors are connected:
 - i) What is the effective resistance in series combination.
 - ii) What is the effective resistance in parallel combination.
 - c) State Thevinis theorem and Norton's theorem.
 - d) Define peak factor, crest factor, form factor.
 - e) Give the differences between series and parallel resonance.
 - f) Define quality factor and give relation between quality factor and bandwidth.
 - g) What are the advantages of three phase system.
 - h) What is a balanced system.
 - i) What is meant by source transformation technique.
 - j) Give the expression for energy stored in capacitor & inductor.

UNIT - I

2) a) Write about Mesh analysis.

b) Calculate current in each element of the circuit.

OR

- a) Write about Nodal analysis.
 - b) In the circuit shown in figure the current is 5 Ω resistor is 5 amp. Calculate power consumed by 5Ω resistor. Also determine current through 10Ω resistor and the supply voltage E.

UNIT - II

- 4) a) Define maximum power transfer theorem.
 - b) Find value of R for maximum power transfer. Also calculate the maximum power.

5) Derive the expression for response when RC series circuit is excited by a AC source.

UNIT - III

- 6) a) For a π connected resistive network, compute short circuit z -parameters.
 - b) A series RLC circuit consists of R = 50 Ω , L = 20 μ H and C = 10 μ F. The applied voltage is 100V. Find (i) W_o (ii) Q_o (iii) Bandwidth

OR

7) Derive the expression for resonant frequency and quality factor for series resonance.

<u>UNIT - IV</u>

- 8) a) What is polyphase system and write its advantages.
 - b) For a star connected network, derive the relationship b/w line and phase values with the help of phasor diagram.

OR

- 9) a) Describe about generation of $3-\phi$ voltages.
 - b) Determine the active and reactive components of voltages in each phase of star connected 4400V, 3-phase s/m supplying 3500 kW at a power factor 0.65.
