B. Tech. DEGREE EXAMINATION, MAY - 2015
 (Examination at the end of Final Year)

CIVIL ENGINEERING

Paper - III : Water Resources Engineering-III : Design \& Drawing

Time: 3 Hours

Maximum Marks : 75

All questions carry equal marks

Unit - I

1) Design and draw a lined canal carrying $230 \mathrm{~m}^{3} / \mathrm{sec}$ has to be flumed through a ridge 1700 m long where rock has been met with. The canal in the normal reach has the following hydraulic particularly.

Discharge : $222 \mathrm{~m}^{3} / \mathrm{sec}$
Bed width : 25.5 m
Depth : 5.5 m
Velocity of flow : $1.3 \mathrm{~m} / \mathrm{sec}$
Side slopes $11 / 2: 1$ and coefficient of rugosity 0.018 for lined canal.
Longitudinal bed slope : $1 / 10,000$.
The flume portion is assumed to be in hard rock where a side slope of $1 / 4$ to 1 is permissible. The maximum velocity assumed in the flume may be taken as $2.5 \mathrm{~m}^{3} / \mathrm{sec}$. Assume the whole flume also to be lined $(\mathrm{n}=0.018)$.

OR
2) Design the canal regulator with road way with the following data :

Particulars of canal		U / S of Regulator	D / S of Regulator
Fully supply discharge	$:$	$25 \mathrm{~m}^{3} / \mathrm{sec}$	$20 \mathrm{~m}^{3} / \mathrm{sec}$
Bed width	$:$	16 m	16 m
Full supply level	$:$	24.3 m	23.9 m
Top of bank level	$:$	25.3 m	24.9 m
Top width of right bank	$:$	5 m	5 m
Top width of left bank	$:$	2.5 m	2.5 m

Bed level : 22m 22m
The regulator carries roadway single lane. Design for IRC loading class-A. Provide a free board of 1 m above FSL for load bridge. Good foundation is available at 20 m . The general GL is 24.5 m . Assume any other data suitably. Draw the longitudinal section of the regulator (not ot scale).

Unit - II

3) Design and draw the surplus work of a tank forming part of a chain of tanks. The combined catchment area of the group of tanks is 30.45 sq . km and the area of the catchment intercepted by the upper tank is $24.85 \mathrm{sq} . \mathrm{km}$.

It is decided to store water in the tank to a level of +12.00 m above M.S.L, limiting the submersion of fore share lands up to a level of 12.75 m above M.S.L, the ground level at the proposed site of work is +11.00 m , and ground level below the proposed surplus slopes 1:4 till it reaches +10.00 m in about 6 m distance.

The tank bund has a top width of 2 m at level +14.50 with $2: 1$ side slopes on either side. The tank bunds are designed for a saturation gradient of $4: 1$ with one meter clear over. The foundations are hard gravel at a level of 9.5 meters near the site of work.
(Assume Ryve's coefficient as 9 and modified coefficient as 1.50).

OR

4) Design a syphon aquaduct (Type IV) for the following data :

Discharge of canal $=60$ cumecs
Bed width of canal $=35 \mathrm{~m}$
Bed level of canal $=+150.0 \mathrm{~m}$
Full supply level of canal $=+152.0 \mathrm{~m}$
Top width of bund $=5 \mathrm{~m}$
Side slopers of canal $=1 \mathrm{~V}: 2 \mathrm{H}$
Bed level of drain $=+148 \mathrm{~m}$
High flood level of drain $=150.5 \mathrm{~m}$
General level of ground is at +150.0 m
Hard soil is available at +147 m
Assume any other data suitably
Draw to a suitable scale the longitudinal sectional elevation along the barrel.

