(DCE 411)

B.Tech DEGREE EXAMINATION, MAY - 2015

(Examination at the End of Final Year)

CIVIL ENGINEERING

Paper - I : Advanced Structural Analysis - II

Time : 3 Hours

1)

a)

b)

c)

d)

e)

f)

Maximum Marks : 75

Answer question No.1 compulsory	(15)
Answer ONE question from each unit	(4 × 15 = 60)
What are the forces developed at a section in a curved beam?	
Define Torsion factor.	
Write the applications to continuous beams.	
Define rigid jointed plane.	
What are the disadvantages of matrix methods?	
What are the different approaches to matrix methods?	

- Define kinematic Indeterminacy. g)
- Write any two differences between stress and strain. h)
- Define stiffness and flexibility. i)
- j) What is a continuous beam?
- Define fully plastic moment. k)
- Define shape factor. 1)
- m) Difference between a frame & a truss.

- n) Define matrix.
- o) Define ultimate load.

<u>UNIT – I</u>

2)	a)	Derive an expression for semicircular beam loaded uniformly and supported on	
		symmetrically placed columns.	[8]

b) Write the statement of Muller-Breslu principle? [7]

OR

3) Compute the ordinates of influence lines for reaction R_A for beam shown in fig. at 1m interval & draw the influence line diagram. Moment of inertia is constant through out. [15]

<u>UNIT - II</u>

4)	a)	Define shape factor? Derive shape factors for rectangular section.	[7]
	b)	State & explain upper and lower bound theorems.	[8]

OR

- 5) a) Derive Moment Curvature relationships for flexural members. [8]
 - b) What do you mean by collapse load factor? Explain with an example. [7]

<u>UNIT – III</u>

6) Analyse the continuous beam by flexibility matrix method. Draw SFD & BMD. Assuming constant EI throughout the beam and Draw elastic curve. [15]

7) Analyse the portal frame ABCD by flexibility matrix method. EI is constant throughout. [15]

UNIT - IV

8) Analyse the beam shown by stiffness matrix method.

9) Using stiffness matrix method, analyse the frame shown. Take EI constant throughout. [15]

φφφ

[15]