(DCE 314)

B.Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Third Year)

CIVIL ENGINEERING

Paper - IV : Design of Concrete Structures - I

Time : 3 Hours

Maximum Marks: 75

Answer ONE question from each unit

All questions carry equal marks

<u>UNIT – I</u>

1) An isolated T-beam of span 4.5m has a 800mm wide flange 100 mm trick. The overall depth of the beam is 450 mm and the width of the rib is 250 mm. The beam is reinforced with 4 bars of 20 mm diameter. If the permissible stresses in concrete and steel are 7 N/mm² and 230 N/mm², find moment of resistance. Take m = 13.33 use working stress method.

OR

- 2) a) What are the assumptions made in a Working stress Design?
 - b) What are the differences between Balanced section, under Reinforced section & over Reinforced section? Explain.

<u>UNIT - II</u>

3) A doubly reinforced beam section is 250m wide and 500 mm deep to the centre of tensile reinforcement. It is reinforced with 2 bars of 16 mm diameter as compressive reinforcement at an effective cover of 50 mm and 4 bars of 20 mm diameter as tensile steel. Find moment of resistance of the beam section. Use M₂₀ concrete and Fe₄₁₅ steel. Use limit state method.

OR

4) A T-beam of flange width 1200mm, flange thickness 100mm, rib width 275 mm has an effective depth of 550 mm and is reinforced with 6 bars of 20 mm diameter and 4 bars of 16mm diameter. Find ultimate moment of resistance. Use M₂₀ concrete and Fe₄₁₅ steel. Use limit state method.

<u>UNIT - III</u>

- 5) a) Briefly explain the reasons for the development of diagonal tension cracks in R.C beams.
 - b) Explain the various types of shear failures and shear design of R.C.C. beams.

6) A reinforced concrete beam has a support section with a width of 250 mm and effective depth of 500 mm. The support section is reinforced with 3 bars of 20 mm diameter on the tension side. 8mm diameter two legged stirrups are provided at a spacing of 200 mm centers. Using M₂₀ grade concrete and Fe₄₁₅ steel, estimate the shear strength of the support section.

<u>UNIT - IV</u>

7) Design a balanced singly reinforced concrete beam section having an effective depth twice that of the width to support a uniformly distributed total (dead + live) load of 10kN/m over an effective span of 5m. Assume cover to tensile steel as 50 mm. Adopt M₂₀ grade concrete and Fe₄₁₅ grade steel. Use working stress method?

OR

8) The main stair of an office building has to be located in a stair measuring $3.5m \times 5.5m$. The vertical distance between the floors is 3.75m. Design the stairs. Allow a live load of 2000 N/m². Use M₂₀ concrete and Fe₄₁₅ steel. Use working stress method.

<u>UNIT - V</u>

9) A beam and slab floor of R.C.C. consists of a continuous slab supported on beams of 6m dear span having 400 mm end bearings. The beams are spaced at 2.75 meters T-beam. Use M₂₀ concrete and Fe₄₁₅ steel. Use limit state method.

OR

10) Design a cantilever beam with a clear span of 3.0 mt which carries a superimposed load of 25 kN/m run. Use M₂₀ Mix and Fe₄₁₅ steel by using LSM.

**