UNIT-I

1. (a) Let A, B, C be arbitrary sets, prove that:
 (i) \((A - B) - C = (A - C) - B\).
 (ii) \((A - B) - C = (A - C) - (B - C)\).
 (iii) \((A \cap B) \subseteq B \subseteq (A \cup B)\).
 (iv) \((A \cap B) \subseteq A \subseteq (A \cup B)\).

 (b) Show that if any four numbers are chosen from 1 to 6, then two of them will add to 7.

2. (a) Define the following:
 (i) Reflexive relation.
 (ii) Anti-symmetric relation.
 (iii) Transitive relation.
 (iv) Irreflexive relation.

 (b) Let \(P(S)\) be the power set of the set \(S = \{1, 2, 3\}\). Deduce the relation set and construct the hasse diagram using lattice \((P(S), \cup, \cap)\).

 (c) Find the greatest and smallest elements of the lattice of Question No. 2(b).
UNIT-II

3. (a) Construct the truth tables for the following statements:
 (i) \(p \rightarrow p \).
 (ii) \((p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)) \).

(b) Determine the number of ways to place \((2t + 1)\) distinguishable balls in three distinct boxes so that any two boxes together will contain more balls than the other.

4. (a) Solve the difference equation:
 \[a_n - 7a_{n-1} + 10a_{n-2} = 0 \]
 satisfying the conditions,
 \[a_0 = 0 \text{ and } a_1 = 6. \]

(b) John made the following statements:
 (i) I love Lucky.
 (ii) If I love Lucky, then I also love Vivian.

Given that John either told the truth or lied in both cases, determine whether John really loves Lucky.

UNIT-III

5. (a) For any arbitrary group \(G \), prove:
 (i) identity element is unique.
 (ii) inverse of an element is unique.
 (iii) \((a^{-1})^{-1} = a \).
 (iv) \((ab)^{-1} = b^{-1}a^{-1} \).

(b) Let \(G \) be a finite group and \(H \) be a subgroup of \(G \). If \(aH = \{ah : h \in H\} \), show that for any \(a, b \in G \), either \(aH = bH \) or \(aH \cap bH = \phi \).
6. (a) Is addition (+) on the set \(s = \{0, 1, -1\} \) an operation. Why?
(b) State and prove Lagrange's Theorem.
(c) Prove that \(Z_p \) is a field, where \(p \) is a prime number.

UNIT-IV

7. (a) Find the shortest path from \(a \) to \(e \) in the following weighted graph using Dijkstra's algorithm:

(b) Prove that there is one and only one path from root to any node in a tree.

8. (a) Construct the binary tree for the expression

\[E = (a + b)^* \left(\left(d - e \right) / \left(f - g \right) \right) - h/k \]

and find its preorder and postorder traversals.

(b) Prove that \(K_{3,3} \) is non-planar.

(c) Check and state which of the following are bi-partite graphs and why?

(i)
(ii)
(iii) \((8,6,6) \)